\(\int \tan (c+d x) (a+b \tan (c+d x))^{3/2} \, dx\) [514]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 128 \[ \int \tan (c+d x) (a+b \tan (c+d x))^{3/2} \, dx=-\frac {(a-i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}-\frac {(a+i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}+\frac {2 a \sqrt {a+b \tan (c+d x)}}{d}+\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d} \]

[Out]

-(a-I*b)^(3/2)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/d-(a+I*b)^(3/2)*arctanh((a+b*tan(d*x+c))^(1/2)/(a
+I*b)^(1/2))/d+2*a*(a+b*tan(d*x+c))^(1/2)/d+2/3*(a+b*tan(d*x+c))^(3/2)/d

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3609, 3620, 3618, 65, 214} \[ \int \tan (c+d x) (a+b \tan (c+d x))^{3/2} \, dx=-\frac {(a-i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}-\frac {(a+i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}+\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}+\frac {2 a \sqrt {a+b \tan (c+d x)}}{d} \]

[In]

Int[Tan[c + d*x]*(a + b*Tan[c + d*x])^(3/2),x]

[Out]

-(((a - I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d) - ((a + I*b)^(3/2)*ArcTanh[Sqrt[a + b*T
an[c + d*x]]/Sqrt[a + I*b]])/d + (2*a*Sqrt[a + b*Tan[c + d*x]])/d + (2*(a + b*Tan[c + d*x])^(3/2))/(3*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3609

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*
((a + b*Tan[e + f*x])^m/(f*m)), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}+\int (-b+a \tan (c+d x)) \sqrt {a+b \tan (c+d x)} \, dx \\ & = \frac {2 a \sqrt {a+b \tan (c+d x)}}{d}+\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}+\int \frac {-2 a b+\left (a^2-b^2\right ) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx \\ & = \frac {2 a \sqrt {a+b \tan (c+d x)}}{d}+\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {1}{2} \left (i (a-i b)^2\right ) \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx+\frac {1}{2} \left (i (a+i b)^2\right ) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx \\ & = \frac {2 a \sqrt {a+b \tan (c+d x)}}{d}+\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}+\frac {(a-i b)^2 \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}+\frac {(a+i b)^2 \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d} \\ & = \frac {2 a \sqrt {a+b \tan (c+d x)}}{d}+\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}+\frac {\left (i (a-i b)^2\right ) \text {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}-\frac {\left (i (a+i b)^2\right ) \text {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d} \\ & = -\frac {(a-i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}-\frac {(a+i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}+\frac {2 a \sqrt {a+b \tan (c+d x)}}{d}+\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.91 \[ \int \tan (c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\frac {-3 (a-i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )-3 (a+i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )+2 \sqrt {a+b \tan (c+d x)} (4 a+b \tan (c+d x))}{3 d} \]

[In]

Integrate[Tan[c + d*x]*(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(-3*(a - I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]] - 3*(a + I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan
[c + d*x]]/Sqrt[a + I*b]] + 2*Sqrt[a + b*Tan[c + d*x]]*(4*a + b*Tan[c + d*x]))/(3*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(830\) vs. \(2(106)=212\).

Time = 0.34 (sec) , antiderivative size = 831, normalized size of antiderivative = 6.49

method result size
derivativedivides \(\frac {2 \left (a +b \tan \left (d x +c \right )\right )^{\frac {3}{2}}}{3 d}+\frac {2 a \sqrt {a +b \tan \left (d x +c \right )}}{d}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{2 d}+\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}\, a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \left (a^{2}+b^{2}\right )}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {2 \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a^{2}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{2 d}-\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}\, a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \left (a^{2}+b^{2}\right )}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {2 \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a^{2}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\) \(831\)
default \(\frac {2 \left (a +b \tan \left (d x +c \right )\right )^{\frac {3}{2}}}{3 d}+\frac {2 a \sqrt {a +b \tan \left (d x +c \right )}}{d}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{2 d}+\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}\, a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \left (a^{2}+b^{2}\right )}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {2 \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a^{2}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{2 d}-\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}\, a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \left (a^{2}+b^{2}\right )}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {2 \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a^{2}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\) \(831\)

[In]

int(tan(d*x+c)*(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/3*(a+b*tan(d*x+c))^(3/2)/d+2*a*(a+b*tan(d*x+c))^(1/2)/d-1/4/d*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2
*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)+1/2/d*ln((a+b*tan(d*x+
c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/d/(2
*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)
-2*a)^(1/2))*(a^2+b^2)^(1/2)*a+1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*
tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)-2/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+
b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/4/d*ln(b*tan(d*x+c)+a+(a+
b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/
2)-1/2/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^
(1/2)+2*a)^(1/2)*a-1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^
(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)^(1/2)*a-1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d
*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)+2/d/(2*(a^2+b^2)^(1/2)-2*
a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 756 vs. \(2 (102) = 204\).

Time = 0.25 (sec) , antiderivative size = 756, normalized size of antiderivative = 5.91 \[ \int \tan (c+d x) (a+b \tan (c+d x))^{3/2} \, dx=-\frac {3 \, d \sqrt {\frac {a^{3} - 3 \, a b^{2} + d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}} \log \left (-{\left (3 \, a^{4} + 2 \, a^{2} b^{2} - b^{4}\right )} \sqrt {b \tan \left (d x + c\right ) + a} + {\left (d^{3} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}} - {\left (3 \, a^{3} - a b^{2}\right )} d\right )} \sqrt {\frac {a^{3} - 3 \, a b^{2} + d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}}\right ) - 3 \, d \sqrt {\frac {a^{3} - 3 \, a b^{2} + d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}} \log \left (-{\left (3 \, a^{4} + 2 \, a^{2} b^{2} - b^{4}\right )} \sqrt {b \tan \left (d x + c\right ) + a} - {\left (d^{3} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}} - {\left (3 \, a^{3} - a b^{2}\right )} d\right )} \sqrt {\frac {a^{3} - 3 \, a b^{2} + d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}}\right ) - 3 \, d \sqrt {\frac {a^{3} - 3 \, a b^{2} - d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}} \log \left (-{\left (3 \, a^{4} + 2 \, a^{2} b^{2} - b^{4}\right )} \sqrt {b \tan \left (d x + c\right ) + a} + {\left (d^{3} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}} + {\left (3 \, a^{3} - a b^{2}\right )} d\right )} \sqrt {\frac {a^{3} - 3 \, a b^{2} - d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}}\right ) + 3 \, d \sqrt {\frac {a^{3} - 3 \, a b^{2} - d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}} \log \left (-{\left (3 \, a^{4} + 2 \, a^{2} b^{2} - b^{4}\right )} \sqrt {b \tan \left (d x + c\right ) + a} - {\left (d^{3} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}} + {\left (3 \, a^{3} - a b^{2}\right )} d\right )} \sqrt {\frac {a^{3} - 3 \, a b^{2} - d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}}\right ) - 4 \, {\left (b \tan \left (d x + c\right ) + 4 \, a\right )} \sqrt {b \tan \left (d x + c\right ) + a}}{6 \, d} \]

[In]

integrate(tan(d*x+c)*(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/6*(3*d*sqrt((a^3 - 3*a*b^2 + d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)*log(-(3*a^4 + 2*a^2*b^2 - b
^4)*sqrt(b*tan(d*x + c) + a) + (d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) - (3*a^3 - a*b^2)*d)*sqrt((a^3 -
3*a*b^2 + d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)) - 3*d*sqrt((a^3 - 3*a*b^2 + d^2*sqrt(-(9*a^4*b^2
 - 6*a^2*b^4 + b^6)/d^4))/d^2)*log(-(3*a^4 + 2*a^2*b^2 - b^4)*sqrt(b*tan(d*x + c) + a) - (d^3*sqrt(-(9*a^4*b^2
 - 6*a^2*b^4 + b^6)/d^4) - (3*a^3 - a*b^2)*d)*sqrt((a^3 - 3*a*b^2 + d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^
4))/d^2)) - 3*d*sqrt((a^3 - 3*a*b^2 - d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)*log(-(3*a^4 + 2*a^2*b
^2 - b^4)*sqrt(b*tan(d*x + c) + a) + (d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) + (3*a^3 - a*b^2)*d)*sqrt((
a^3 - 3*a*b^2 - d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)) + 3*d*sqrt((a^3 - 3*a*b^2 - d^2*sqrt(-(9*a
^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)*log(-(3*a^4 + 2*a^2*b^2 - b^4)*sqrt(b*tan(d*x + c) + a) - (d^3*sqrt(-(9*a
^4*b^2 - 6*a^2*b^4 + b^6)/d^4) + (3*a^3 - a*b^2)*d)*sqrt((a^3 - 3*a*b^2 - d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b
^6)/d^4))/d^2)) - 4*(b*tan(d*x + c) + 4*a)*sqrt(b*tan(d*x + c) + a))/d

Sympy [F]

\[ \int \tan (c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\int \left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}} \tan {\left (c + d x \right )}\, dx \]

[In]

integrate(tan(d*x+c)*(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral((a + b*tan(c + d*x))**(3/2)*tan(c + d*x), x)

Maxima [F(-2)]

Exception generated. \[ \int \tan (c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(tan(d*x+c)*(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is

Giac [F(-1)]

Timed out. \[ \int \tan (c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)*(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 7.50 (sec) , antiderivative size = 1112, normalized size of antiderivative = 8.69 \[ \int \tan (c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\text {Too large to display} \]

[In]

int(tan(c + d*x)*(a + b*tan(c + d*x))^(3/2),x)

[Out]

atan((b^6*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*d^2) + (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2))
^(1/2)*32i)/((32*a^2*b^6)/d - (a*b^7*16i)/d - (16*b^8)/d + (a^3*b^5*32i)/d + (48*a^4*b^4)/d + (a^5*b^3*48i)/d)
 + (32*a*b^5*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*d^2) + (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^
2))^(1/2))/((32*a^2*b^6)/d - (a*b^7*16i)/d - (16*b^8)/d + (a^3*b^5*32i)/d + (48*a^4*b^4)/d + (a^5*b^3*48i)/d)
- (a^2*b^4*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*d^2) + (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2)
)^(1/2)*96i)/((32*a^2*b^6)/d - (a*b^7*16i)/d - (16*b^8)/d + (a^3*b^5*32i)/d + (48*a^4*b^4)/d + (a^5*b^3*48i)/d
) - (96*a^3*b^3*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*d^2) + (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4
*d^2))^(1/2))/((32*a^2*b^6)/d - (a*b^7*16i)/d - (16*b^8)/d + (a^3*b^5*32i)/d + (48*a^4*b^4)/d + (a^5*b^3*48i)/
d))*(-(3*a*b^2 + a^2*b*3i - a^3 - b^3*1i)/(4*d^2))^(1/2)*2i - atan((b^6*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*d^2
) - (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) + (a^2*b*3i)/(4*d^2))^(1/2)*32i)/((16*b^8)/d - (a*b^7*16i)/d - (32*a^
2*b^6)/d + (a^3*b^5*32i)/d - (48*a^4*b^4)/d + (a^5*b^3*48i)/d) - (32*a*b^5*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*
d^2) - (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) + (a^2*b*3i)/(4*d^2))^(1/2))/((16*b^8)/d - (a*b^7*16i)/d - (32*a^2
*b^6)/d + (a^3*b^5*32i)/d - (48*a^4*b^4)/d + (a^5*b^3*48i)/d) - (a^2*b^4*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*d^
2) - (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) + (a^2*b*3i)/(4*d^2))^(1/2)*96i)/((16*b^8)/d - (a*b^7*16i)/d - (32*a
^2*b^6)/d + (a^3*b^5*32i)/d - (48*a^4*b^4)/d + (a^5*b^3*48i)/d) + (96*a^3*b^3*(a + b*tan(c + d*x))^(1/2)*(a^3/
(4*d^2) - (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) + (a^2*b*3i)/(4*d^2))^(1/2))/((16*b^8)/d - (a*b^7*16i)/d - (32*
a^2*b^6)/d + (a^3*b^5*32i)/d - (48*a^4*b^4)/d + (a^5*b^3*48i)/d))*(-(3*a*b^2 - a^2*b*3i - a^3 + b^3*1i)/(4*d^2
))^(1/2)*2i + (2*(a + b*tan(c + d*x))^(3/2))/(3*d) + (2*a*(a + b*tan(c + d*x))^(1/2))/d